Building a Multimodal Network for Accessibility Analysis in ArcGIS

Dan Seidensticker
GIS Specialist
Madison Area Transportation Planning Board
www.MadisonAreaMPO.org

2018 MPO / RPC / DOT Conference
Early Experiments in Transportation

The Far Side
What is Accessibility Analysis?

• A method to measure the performance of transportation networks.

 • Measure access to jobs, points of interest, or for population groups,…

 • The network can be simple (one mode - auto) or complex (several modes – auto, biking, walking, transit...)

• The measure is calculated using an Origin-Destination (OD) Cost Matrix analysis on a network.
Origin-Destination (OD) Cost Matrix:
GIS data for a Multimodal Network

- Determine Transportation

<table>
<thead>
<tr>
<th>Mode</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto</td>
<td>Street Centerlines</td>
</tr>
<tr>
<td>Bike</td>
<td>Bike Paths</td>
</tr>
<tr>
<td>Walk</td>
<td>Sidewalks, Paths</td>
</tr>
<tr>
<td>Transit</td>
<td>GTFS Files</td>
</tr>
</tbody>
</table>
Network Attributes

• Speed
 • Auto - posted and/or actual.
 • Bike (9.6 mph), Pedestrian (3.1 mph) - average speed.

• Accessibility Restrictions
 • Auto, Bike, Pedestrian
 • Y/N

• One-way
 • Auto, Bike (not always the same as auto).
 • B/T/F

• Connectivity - grade access, bridges, tunnels.
 • Elevation Fields
 • Edit Geography
Network Attributes:
Minimum needed for bike, pedestrian, auto

<table>
<thead>
<tr>
<th>fullStreetName</th>
<th>FrElevation</th>
<th>ToElevation</th>
<th>OneWay</th>
<th>OneWayB</th>
<th>Speed</th>
<th>Auto_Access</th>
<th>Ped_Access</th>
<th>Bike_Access</th>
<th>Shape_Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bowlavard Avenue</td>
<td>0</td>
<td>0</td>
<td>B</td>
<td>B</td>
<td>25</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>468.576643</td>
</tr>
<tr>
<td>State Highway 73</td>
<td>1</td>
<td>0</td>
<td>T</td>
<td>T</td>
<td>55</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>320.756746</td>
</tr>
<tr>
<td>US Highway 51</td>
<td>0</td>
<td>0</td>
<td>F</td>
<td>F</td>
<td>25</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>48.275054</td>
</tr>
<tr>
<td>Lee Valley Road</td>
<td>0</td>
<td>0</td>
<td>B</td>
<td>B</td>
<td>55</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>2302.746675</td>
</tr>
<tr>
<td>Tyvand Road</td>
<td>0</td>
<td>0</td>
<td>B</td>
<td>B</td>
<td>55</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>7669.456926</td>
</tr>
<tr>
<td>Taylor Lane</td>
<td>0</td>
<td>0</td>
<td>B</td>
<td>B</td>
<td>45</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>5541.04026</td>
</tr>
<tr>
<td>Fosson Court</td>
<td>0</td>
<td>0</td>
<td>B</td>
<td>B</td>
<td>25</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>309.472705</td>
</tr>
<tr>
<td>Danks Road</td>
<td>0</td>
<td>0</td>
<td>B</td>
<td>B</td>
<td>45</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>7873.815724</td>
</tr>
<tr>
<td>Bingham Road</td>
<td>0</td>
<td>0</td>
<td>B</td>
<td>B</td>
<td>55</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>446.129229</td>
</tr>
<tr>
<td>Ann Court</td>
<td>0</td>
<td>0</td>
<td>B</td>
<td>B</td>
<td>25</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>350.387584</td>
</tr>
<tr>
<td>State Highway 138</td>
<td>0</td>
<td>0</td>
<td>B</td>
<td>B</td>
<td>55</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>3192.068398</td>
</tr>
<tr>
<td>Center Road</td>
<td>0</td>
<td>0</td>
<td>B</td>
<td>B</td>
<td>45</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>4355.378944</td>
</tr>
<tr>
<td><Null></td>
<td>0</td>
<td>0</td>
<td>B</td>
<td>B</td>
<td>25</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>1075.006389</td>
</tr>
<tr>
<td>State Highway 138</td>
<td>0</td>
<td>0</td>
<td>B</td>
<td>B</td>
<td>55</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>2360.372396</td>
</tr>
<tr>
<td>Hogie Road</td>
<td>0</td>
<td>0</td>
<td>B</td>
<td>B</td>
<td>55</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>248.829699</td>
</tr>
</tbody>
</table>
GIS Data Sources

• Ready to use networks:
 • Citilabs-Sugar Access – HERE Data
 • ArcGIS Online Network Analysis Services

• Data sources to build your own network:
 • Local, State, Federal Government
 • Open source (Open Street Map)
 • MapCompare
 • GTFS
 • Local Transit Agency
 • TransitLand (https://transit.land/)
 • TransitFeeds (https://transitfeeds.com/)
GIS Data Sources

- MATPB Multimodal Network Data Sources:
 - Street Centerlines – Dane County LIO
 - Bike Paths – MATPB
 - Pedestrian Paths – MATPB, Open Street Map
 - Transit – Madison Metro Transit GTFS (General Transit Feed Specification)
Build the Network in Network Analyst: Many options, parameters, settings
Adding Transit to The Network: GTFS (General Transit Feed Specification) Files

GTFS Files:
Set of text files:
Adding Transit to The Network: GTFS Tools

• First make a copy of the Non-Transit Network
 • Use this as a base for Transit Networks

Esri Tools:

• *Add GTFS to a Network DataSet*
 • Incorporates GTFS into a Network.
 • Use in ArcGIS Network Analyst for OD Analysis, Routing.

• *BetterBusBuffers*
 • Frequency of Transit Service (count trips by stop, route)
 • Requires a Non-Transit Network

• On Esri Open Source site:
Accessibility Analysis Example: Transit Access to Jobs

Percentage of Jobs (2010) in Madison Urban Area Accessible within 30 Minutes of Walking and/or Transit During the Morning Peak Period

- 0% - 1%
- 2% - 3%
- 4% - 5%
- 6% - 7%
- 8% - 11%
- 12% - 16%
- 17% - 22%
- 23% - 29%
- 30% - 40%

* Start time: Wednesday, 7:30 AM.
* Areas in white are not served by Bus Transit.
Accessibility Analysis Example:
Transit Access for Proposed DMV Locations

Existing Peak Service Area (8:30 AM)
Proposed Peak Service Area (8:30 AM)

Transit Travel Time to DMV
- 1 to 20 minutes
- 21 to 40 minutes
- 41 to 60 minutes

Concentration of Minority Population*
- Greater than 40% of Total Population

DMV Location
Street Centerline
Rail Corridor
Lake
Accessibility Analysis Example:
Access to Jobs on Low vs. High Stress Bike Network
Routing Example:
Low-Stress Bike Route Finder
Thank you.

Dan Seidensticker
Madison Area Transportation Planning Board
www.MadisonAreaMPO.org

dseidensticker@cityofmadison.com
608-266-9119